GCE MARKING SCHEME

PHYSICS
AS/Advanced

JANUARY 2013

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2013 examination in GCE PHYSICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Unit Page
PH1 1
PH2 5
PH4 12

GCE Physics - PH1

Mark Scheme - January 2013

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details \\
Decelerating (1) Gradient changes/decreases or correct use of values from the graph (1)
\[
0.75 \mathrm{~m} \mathrm{~s}^{-1} \text { (unit mark) }
\] \\
Any tangent at 6 s (1) Speed: \(0.55-0.75\left[\mathrm{~m} \mathrm{~s}^{-1}\right]\) \\
No- infinite speed (or equiv) don't accept very large speed Yes- stopped
\end{tabular}} \& Marks Available \\
\hline 1 \& (a)

(b) \& \[
$$
\begin{array}{r}
\text { (i) } \\
\text { (ii) } \\
\text { (iii) } \tag{1}\\
\text { (iv) } \\
\text { (I) } \\
\text { (II) }
\end{array}
$$

\] \& \& | [2] |
| :--- |
| [1] |
| [2] |
| [1] |
| [1] |
| [2] |
| [9] |

\hline 2 \& (a)

(b)

(c) \& \begin{tabular}{l}
(i)

(ii)

(i)

(ii)

(i)

(ii)

 \&

Resistance $=\frac{p d}{\text { current }}$ (accept: voltage $/$ if V and I written must be qualified)

$V=\mathrm{J} \mathrm{C}^{-1}$ (1); $I=\mathrm{C} \mathrm{s}^{-1}$ (1); Convincing working (1)

Don't accept use of t-award ecf for $3^{\text {rd }}$ mark. Alternative route using power formulae is acceptable.

$$
\begin{align*}
& I=\frac{V_{i n}}{R_{1}+R_{2}} \\
& V_{\text {out }}=I R_{2}(1) ; I(\text { from (i)) used correctly } \tag{1}
\end{align*}
$$

Question 2 total

 \&

{$[1]$}

{$[3]$}

{$[1]$}

{$[2]$}

{$[2]$}

[1]

[2]

\hline 11$]$
\end{tabular}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Marking details \\
Straight line through origin. Accept \(F \alpha x\). \\
Area \(=1 / 2 F x\) (1); \(F=k x\) and clear substitution/manipulation (1)
\[
F=8.0[\mathrm{~N}](1) \quad \text { or } \quad k=100\left[\mathrm{Nm}^{-1}\right]
\] \\
Use of \(1 / 2 F x\) Use of \(1 / 2 k x^{2}\) \\
(i.e \(1 / 2 \times 8.0 \times 80 \times 10^{-3}\)) (1) \\
(i.e \(\left.\frac{1}{2} \times 100 \times\left(80 \times 10^{-3}\right)^{2}\right)(1)\)
\[
=0.32[\mathrm{~J}](1)
\] \\
(ecf for \(F\)) derived value of \(k\))
\[
\begin{equation*}
0.32=1 / 2 m v^{2}(\text { ecf })(1) ; v=4.0\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \tag{1}
\end{equation*}
\] \\
\(\Delta E_{\mathrm{k}}=F d\) understood (1)
\[
d=(0.8+0.4+(2 \pi(0.2))) \text { or } 2.46[\mathrm{~m}](1)
\] \\
\(\Delta E_{\mathrm{k}}=0.03[\mathrm{~J}]\) or \(\left(1 / 2 \times 0.04 \times\left(4^{2}-3.8^{2}\right)\right)(1)(e c f\) from (b) (ii)) \(F=0.013[\mathrm{~N}]\) (1) (ecf for \(d\)) \\
Alternative method using equations of motion and \(F=m a\) acceptable. \\
Question 3 Total
\end{tabular}} \& Marks Available \\
\hline 3 \& (a)
(b)

(c) \& (i)
(ii)
(i)

(ii) \& \& [1]
[2]
[3]

\hline 4 \& (a) \& (i)
(ii)
(I)
(II)

(i)
(ii)

(\& | $\frac{\text { Correct use of } v^{2}=u^{2}+2 a x\left(\text { i.e. } 0=6^{2}-2 \times 9.81 \times x\right)}{x=1.8[\mathrm{~m}]}(1)$ |
| :--- |
| Total height $=12.8[\mathrm{~m}](1)(\operatorname{ecf}$ for $x)$ |
| $v^{2}=2 \times 9.81 \times 12.8($ ecf $)(1)$ or suitable alternative $v=15.9\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ $\begin{equation*} t_{\mathrm{up}}=\left(\frac{0-6}{-9.81}\right)=0.6[\mathrm{~s}] \tag{1} \end{equation*}$ $\begin{equation*} t_{\mathrm{down}}=\left(\frac{15.9(e c f)-0}{9.81}\right)=1.6[\mathrm{~s}] \tag{1} \end{equation*}$ |
| Total time $=2.2[\mathrm{~s}] \quad(1) \quad($ other solutions possible $)$ |
| (1) Ball only acted upon by force due to gravity / weight is the only force acting (1) Only award $2^{\text {nd }}$ mark if $1^{\text {st }}$ mark correct. |
| (1) Marks are independent. |
| If additional arrows present deduct 1 mark for each extra arrow. |
| (1) |
| Question 4 Total | \& [3] ${ }^{[2]}$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline 5 \& \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Point where entire weight of object acts. Don't accept mass. \\
\(\operatorname{Tan} \theta=40 / 60\) \\
(1); \(\theta=33.7^{\circ}\) \\
(1) \\
\(V=0.6 \times 0.4 \times 0.1\) (1); \(\quad M=\rho \times V\) used correctly (1) \\
\(T \sin \theta\) or equivalent (1) \(\times 1.2\) (1) \(=9.6 \times 9.81 \times 1.8\) (1) \\
\(T=220[\mathrm{~N}] \quad\) (1) \\
\(F=220(\) ecf \() \cos 40^{\circ}\) or equivalent (1) \\
\(F=169\) [N] (1) \\
Accept Pythagoras solution. \\
Question 5 Total
\end{tabular} \& \begin{tabular}{l}
[1] \\
[2] \\
[2] \\
[4] \\
[2] \\
[11]
\end{tabular} \\
\hline 6 \& (a)

(b) \& \begin{tabular}{l}
(i)

(ii)

(iii)

(i)

(ii)

(iii)

 \&

Correct and convincing use of $\rho=\frac{R A}{l}$ (including unit conversion)

$$
\begin{align*}
& \left(\frac{2000}{11.2}\right)=179 \mathrm{~A} \text { unit mark } \\
& v=\frac{I}{n A e} \text { rearranged (or shown numerically) } \tag{1}\\
& n=6.0 \times 10^{28} \times 3(1) \\
& v=1.55 \times 10^{-5}\left[\mathrm{~m} \mathrm{~s}^{-1}\right](\text { ecf on } I \text { and } n)
\end{align*}
$$

Same (or equivalent)

v increased (1) because...; A decreased, I, n, e unchanged by implicaton (1)

Increased frequency / more collisions between electrons and lattice / atoms / ions or electrons carry greater kinetic energy (1) leading to increased vibrational / kinetic energy of lattice atoms (1)

Question 6 Total

 \&

[1]

[1]

[3]

[1]

[2]

[2]

[10]
\end{tabular}

\hline
\end{tabular}

Question			Marking details	Marks Available
7	(a)		V - energy (per coulomb) used in [external] resistor / circuit. (1) E - energy (per coulomb) transferred / supplied by source / in the whole circuit (1) Ir- energy (per coulomb) wasted / lost in source / cell / internal resistance (1) Use of 'per coulomb / unit charge' once. (1)	[4]
	(b)	(i) (ii) (iii)	4 [Ω Gradient attempted e.g. 60/10 (1) (or use of equation ecf from (b) (i)) $\mathrm{emf}=6[\mathrm{~V}]$ (1) $1 / I=4\left[\mathrm{~A}^{-1}\right] \text { or by implication }(1)$ $R=20[\Omega]$ Use of $I^{2} R$ i.e. $(0.25)^{2} \times 20$ (ecf) (1) or correct substitution into both $V=I R \text { and } P=I V \text { or } V^{2} / R$ $P=1.25[\mathrm{~W}]$	[1] [2] [4]
	(c)	$\begin{gathered} \text { (i) } \\ \text { (ii) } \\ \text { (iii) } \end{gathered}$	$\begin{align*} & \text { emf }=12.0[\mathrm{~V}](\text { ecf }) \text { and } r=8.0[\Omega] \text { (ecf) } \\ & R=52.0[\Omega](\text { ecf }) \\ & \mathrm{y} \text { intercept }(r \rightarrow 8.0 \Omega(\text { ecf) })(1) \\ & \text { Precise gradient e.g. through }(5,52) \text { (ecf) } \tag{1} \end{align*}$	[1] [1] [2]
			Question 7 Total	[15]

GCE Physics - PH2

Mark Scheme - January 2013

Question			Marking details	Marks Available
1	(a)	(i) (ii) (iii) (i) (ii) (iii)	$3.0[\mathrm{~cm}]$ [accept 3 cm] $v=3.0 \times 5.0(1)\left[\mathrm{cm} \mathrm{s}^{-1}\right]$ or by implication. Full ecf on λ $t=\frac{d}{v} \operatorname{applied}(1)$ $t=0.70 \mathrm{~s}(\text { ecf on } \lambda)(1)$ OR $\begin{aligned} & d=\frac{10.5}{3.0} \\ & T=0.20[\mathrm{~s}](1) \\ & {\left[t=0.20 x \frac{10.5}{3.0}\right] t=0.70[\mathrm{~s}]} \end{aligned}$ B in phase, C not in phase (in antiphase not acceptable), D in phase irrespective of explanations. (1) Correct answer and understandable explanation or 'in phase' explained, for one of B, C or D. (1) Correct answer and understandable explanation for another of B, C, or D. (1) Diffraction Rounded and (almost) semicircular (Accept gaps of $<=3 \mathrm{~mm}$) (1) λ constant (1) (within about 30%) Any $2 \times(1)$ from: - λ decreased [No penalty for (say) 'halved'] - less spreading - side beams Question 1 total	[1] [3] [3] [1] [2] [2] [12]

Question			Marking details	Marks Available
2	(a)	(i) (ii)	Constructive interference at P / waves arrive in phase at P (1) Same path length from sources / AP = BP / no path difference (1) $\begin{aligned} & 52.2 \text { and } 50.2 \text { (1) } \\ & \lambda=2.0[\mathrm{~cm}] \text { (1) ecf on slips } \end{aligned}$ OR 56.8 and 52.8 (1) $\lambda=2.0[\overline{\mathrm{~cm}]}(1) \text { ecf on slips }$	$\begin{aligned} & {[2]} \\ & {[2]} \end{aligned}$
		(iii) (I)	$\begin{aligned} & \lambda=\frac{10.0 \times 10.0}{50}(1)=2.0 \mathrm{~cm}(1) \text { UNIT } \\ & \text { OR } \lambda=\frac{10.0 \times 12.0}{50}(1)=2.4 \mathrm{~cm}(1) \text { UNIT } \end{aligned}$	[2]
	(b)	(II) (i)	AB or SP not very small compared with D OR maxima not evenly spaced $\begin{aligned} & d=2.0 \times 10^{-6}[\mathrm{~m}](1) \text { or by implication } \\ & 3 \lambda=d^{*} \sin 72.3^{\circ}(1) \\ & {\left[d^{*} \text { needs to be related to } d, \text { even } 5.0 \times 10^{5} \text { would do }\right]} \\ & \lambda=6.35 \times 10^{-7}[\mathrm{~m}](1) \end{aligned}$	[1]
		(ii)	Up to $3^{\text {rd }}$ order visible, $1+3 \times 2$ beams seen OR diagram (1) $\frac{d}{\lambda}=3.15$ (1) so only 3 orders (1) not a freestanding mark OR $\frac{4 \lambda}{d}>1$ so only 3 orders (1) not a freestanding mark	[3]
			Question 2 total	[13]

Question			Marking details	Marks Available
4	(a)		Any 4 x (1) from: - light [energy] in discrete packets - one electron ejected by one photon OR photons don't cooperate - energy not accumulated [by electron] over time or emission from instant light shines - intensity has no effect on $E_{k \max }$ or accept intensity affects number emitted per second - wave theory doesn't predict Einstein's equation or doesn't predict threshold frequency	[4]
	(b)	(i) (ii) (iii)	$\begin{aligned} & E_{k \max }=\left(6.63 \times 10^{-34} \times 8.7 \times 10^{14}-3.8 \times 10^{-19}\right) \\ & E_{k \max }=1.97 \times 10^{-19}[\mathrm{~J}](1) \\ & \text { These photons eject electrons with smaller } E_{k \max }(1) \end{aligned}$ $E_{k \text { max }}$ same as previously with some explanation given (1) Correct use of $c=f \lambda$ (1) e.g. to give $\lambda_{\text {thresh }}=523[\mathrm{~nm}]$ OR $f_{400 \mathrm{~nm}}=7.5 \times 10^{14}[\mathrm{~Hz}]$ OR $f_{700 \mathrm{~nm}}=4.3 \times 10^{14}[\mathrm{~Hz}]$ Comparison of $400[\mathrm{~nm}]$ with $\lambda_{\text {thresh }}(1)$ or $7.5 \times 10^{14}[\mathrm{~Hz}]$ with $f_{\text {trresh }}$ $\left(5.73 \times 10^{14}[\mathrm{~Hz}]\right)$ or substitution of $7.5 \times 10^{14}[\mathrm{~Hz}]$ into Einstein's equation. Conclusion : It can (1) [if reasoned]	[2] [2] [3]
			Question 4 Total	[11]

Question			Marking details	Marks Available
5	(a)		$\begin{aligned} & E=\frac{h c}{\lambda}(1) \text { or equivalent e.g. } E=h f \text { and } f=\frac{c}{\lambda} \\ & \lambda=880[\mathrm{~nm}](1) \end{aligned}$	[2]
	(b)	(i) (ii)	Photon disappears and the electron gains its energy or electron promoted from G to U 1. [Passing] photon 2. Of energy $2.26 \times 10^{-19}[\mathrm{~J}]$ or $\lambda=880[\mathrm{~nm}]$ or equivalent 3. Causes electron to drop [from U to G] 4. Releasing additional photon 5. Identical to or in phase or polarised in the same direction or travelling in the same direction with the incident photon Award (1) mark for each of statements 1,3 and 4 Award the $4^{\text {th }}$ mark for either statement 2 or 5 .	[1] [4]
		(iii)	Electron drops [from U to G] by itself (or randomly or without stimulation...), with emission of photon	[1]
	(c)	$\begin{aligned} & \text { (i) } \\ & \text { (ii) } \end{aligned}$	Raising electrons to higher level or causing population inversion So more electrons in higher level than lower (1). So stimulated emission more probable than absorption (1).	[1] [2]
			Question 5 Total	[11]

Question			Marking details	Marks Available
7	(a)		Name (1) [e.g. antiproton, antineutron] Quarks (1) [e.g. uud, udd	[2]
	(b)	(i) (ii)	Must be neutral or lepton number conserved (1) v_{e} by considering charge and lepton number (1) $1^{\text {st }}$ mark : $\pi^{+}(1)$ Either 2 x (1) from: - y can't be a lepton [violates lepton conservation] - y must be positive - y can't be a baryon OR y must have u quark number [2-1] = 1 (1) and d quark number [12] $=-1$ (1)	[2] [3]
		(iii)	In (i) Yes - quark flavour changes or neutrino (1) In (ii) No - quark flavours conserved (1) [accept no neutrino] Question 7 Total	[2] [9]

GCE Physics - PH4

January 2013 - Markscheme

Question			Marking details	Marks Available
	(c)		Basic shape (decreasing to 1.4 m with a cos or -cos shape) (1) period $=1.6 \mathrm{~s}($ accept $1.5-1.7 \mathrm{~s})$ period constant (1) Question 1 total	[3]
2	(a) (b)	(i) (ii)	$\frac{1}{2} m \overline{c^{2}} \quad$ KE of a particle/atom/molecule $\frac{3}{2} n R T$ internal energy (accept total KE) $N_{A} \times \frac{1}{2} m \overline{c^{2}}=\frac{3}{2} \times 1 \times R T$ (1) (or equivalent) e.g. $\frac{1}{2} m \overline{c^{2}}=\frac{3}{2} k T$ $\overline{c^{2}}=\frac{3 R T}{m N_{A}}$ (1) (i.e. algebra) rms speed $=1350\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ $p=\frac{1}{3} \rho \overline{c^{2}}$ $p=1.16 \times 10^{5} \mathrm{~Pa} / \mathrm{Nm}^{-2}$ (1) ecf UNIT mark Or suitable alternative method	[1] [1] [3] [2]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline \multirow[t]{5}{*}{3} \& \multirow[t]{5}{*}{(a)

(b)} \& \& The [vector] sum of the momenta [of bodies in a system] stays constant [even if forces act between the bodies], (1) provided there is no external [resultant] force. (1) \& [2]

\hline \& \& (i) \& | $\begin{equation*} 1.78 \times 10^{-25} \times u=5.62 \times 10^{5} \times 1.71 \times 10^{-25} \pm 1.36 \times 10^{7} \times 6.64 \times 10^{-27} \tag{1} \end{equation*}$ i.e. attempt at conservation of momentum $u=\left\{5.62 \times 10^{5} \times 1.71 \times 10^{-25}-1.36 \times 10^{7} \times 6.64 \times 10^{-27}\right\} / 1.78 \times 10^{-25}$ |
| :--- |
| i.e. correct algebra and sign (1) $u=32600\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \text { (1) }$ | \& [3]

\hline \& \& (ii) \& | $E=\frac{h c}{\lambda}\left\{\begin{array}{l}\text { or } \quad \mathrm{E}=\mathrm{hf} \text { and } \mathrm{c}=\mathrm{f} \lambda\}(1), ~(1)\end{array}\right.$ |
| :--- |
| Algebra and $p=\frac{h}{\lambda}$ (1) |
| (Use of both $E=m c^{2}$ and $p=m c$ award 1 mark only.) | \& [2]

\hline \& \& (iii) \& | $p=\frac{E}{c}$ attempted (1) |
| :--- |
| $5.62 \times 10^{5} \times 1.71 \times 10^{-25}$ used as a denominator (1) $\begin{align*} & \frac{6.93 \times 10^{-22}}{5.62 \times 10^{5} \times 1.71 \times 10^{-25}} \times 100=0.72 \% \tag{1}\\ & \left(\text { accept: } 4.5 \times 10^{18} \%\right) \end{align*}$ | \& [3]

\hline \& \& \& Question 3 Total \& [10]

\hline
\end{tabular}

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

